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Synthesis of nitrogenated quaternary centered polyhydroxylated aminocyclopentanes by implementa-
tion of ketonitrone-olefin cycloaddition reaction as a key step has been accomplished in a stereocon-
trolled manner. The target molecules were found to be moderate but selective inhibitors of
galactosidases.

� 2009 Elsevier Ltd. All rights reserved.
Synthesis of novel heterocyclic ring systems and polyhydroxy-
lated carbocycles from sugars by using intramolecular nitrone-al-
kene cycloaddition (INAC) reaction1 has gained importance in
recent times. The derived cycloadducts bearing an amino function-
ality emanating due to INAC reactions can serve as excellent pre-
cursors for the synthesis of carbamino sugars, some natural
products, and their analogs.2 In INAC reactions, ketonitrone-olefin
cycloaddition reaction is particularly useful for the synthesis of
nitrogenated quaternary centered molecules.3,4 Inspite of its syn-
thetic potential it has received little attention,4 as compared to
reactions of nitrones derived from aldehydes.1a,5

Over the last few years, synthesis of glycosidase inhibitors has
become one of the promising areas of research in organic chemis-
try.6 Because of their crucial role in biological events, glycosidase
inhibitors are used in the treatment and study of a wide range of
diseases such as diabetes,7 viral infections,8 and cancer.9 Amongst
glycosidase inhibitors, aminocyclopentitols are an important class
of compounds and their chemistry is of significance in medicinal
chemistry as well as natural products chemistry.10 Aminocyclo-
pentitols are structurally similar to sugars and therefore they are
also called as aminocarbasugars.11 These contain three hydroxy
groups along with one free or substituted amino group.12 The core
structure of aminocyclopentitol system is present in a growing
number of natural products. For example, an important group of
naturally occurring glycosidase inhibitors (Fig. 1) bearing aminocy-
ll rights reserved.
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clopentitol moiety includes mannosidase inhibitor mannostatin A
1, the carbocyclic nucleosides viz. aristeromycin 2, neplanocin A
3, and analogs such as epi-50-nor-aristeromycin 4 and the selective
trehalase inhibitor trehazolin 5. Another important aminocyclo-
pentitol BCX-1812 6 is a neuraminidase inhibitor and it is in clin-
ical development to treat influenza.13 Besides these, many other
polyhydroxylated five- and six-membered and bicyclic aza hetero-
cycles and their analogs are potent glycosidase inhibitors.14a Be-
cause of their remarkable structural features and ability to act as
carbohydrate mimics,14b there has been an explosive growth in de-
sign, synthesis and biological evaluation of new glycosidase
inhibitors.15

In conjunction with our interest toward the synthesis of natural
and unnatural azasugars, carbasugars, and hybrid sugars as glyco-
sidase inhibitors16 and in view of the potential of the intramolecu-
lar ketonitrone-olefin cycloaddition reaction, we hereby report on
the synthesis of nitrogenated quaternary centered polyhydroxylat-
ed aminocyclopentanes (aminocyclopentitols) from commercially
available tetra-O-benzyl-D-glucopyranose. Retrosynthetic analysis
for our approach is shown in Scheme 1 which indicates the imple-
mentation of intramolecular ketonitrone-olefin cycloaddition reac-
tion as a key step.

Our synthesis of the target aminocyclopentitol system began
with the Wittig methylenation of commercially available tetra-O-
benzyl-D-glucopyranose 7 (Scheme 2) by Martin’s modified proce-
dure17 to give the corresponding heptenitol 8 in high yield. This
secondary alcohol was subjected to oxidation by pyridinium chlo-
rochromate (PCC) which produced the ketone 9.
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Figure 1. Structures of some biologically important aminocyclopentitols.

HO
HO

HO

OH

NH2

OBn

OBn

OBn

BnO
O O

OBn
OBn

BnO

BnO
OH

OH
N
O

Bn

OBn

OBn
BnO

OBn

Scheme 1. The retrosynthetic analysis of aminocyclopentitols.
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Intramolecular ketonitrone-olefin cycloaddition reaction on ke-
tone 9 upon treatment with N-benzylhydroxylamine in methylene
chloride in the presence of dry pyridine readily led to the forma-
tion of bis-isoxazolidine 11 in 78% yield via intermediate 10
(Scheme 3). In order to obtain the target aminocyclopentitol sys-
tem, global deprotection was carried out by catalytic hydrogena-
tion in 5% TFA/EtOH with 6 bars of H2 for 3 days, which resulted
in cleavage of the N–O bond and removal of all the benzyl protect-
ing groups. The product 12 was isolated in 91% yield by passing
over a column of Dowex 50 resin. This compound was character-
ized as its acetate 13 which was obtained in 68% yield upon
acetylation of 12 using Ac2O/pyridine. The structure and stereo-
chemical outcome of the aminocyclopentitol was deduced from
COSY, NOE, and other spectral data18 of its peracetylated derivative
13. In an NOE experiment, irradiation of the signal for H-5 led to
the enhancement (Fig. 2) of the signal for H-2, H-7, and H-70 and
there was no enhancement of the signals for N–H and H-3. This
suggested that H-2, H-5, carbon side chain containing H-7 and H-
70 are in cis relationship. Therefore it was concluded that the two
carbon side chains are trans to each other whereas the acetoxy
groups at C-1 and C-3 are a-oriented, and the acetoxy groups at
C-2 and NHAc are b-oriented. These NOE observations confirm
the absolute stereochemistry of newly generated chiral centers as
4R and 5S, respectively.

Further investigations on the intramolecular ketonitrone-olefin
cycloaddition were undertaken using ketone 16, which was pre-
pared from D-galactose using the same synthetic sequence and
reaction conditions as shown in Scheme 3 for the conversion of 9
to 13.

The stereochemical outcome of compound 18, obtained from
16, was confirmed from the COSY and NOE (Fig. 2) spectral data
of the corresponding peracetylated derivative 19. In an NOE exper-
iment the irradiation of the signal for H-5 led to the enhancement
of the signal for H-7 and H-70 and there was no enhancement of
the signals for H-3 and H-2. This indicated that H-5, H-7, and H-
70 are in cis relationship. Thus, it was concluded that the two car-
bon side chains are trans to each other, whereas the acetoxy
groups at C-2 and C-3 are b-oriented. This confirmed the absolute
stereochemistry of the newly generated chiral centers as 4S and
5R, respectively.
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The obtained stereochemistry of these molecules can be ex-
plained by the following transition state analysis. During the con-
version of D-glucose-derived ketone into the corresponding
cycloadduct, the transition state A in which nitrone and olefin
could orient in exo manner and then the formation of the 5-mem-
bered ring occur in such a way that –H and the –CH2OBn group are
cis to each other at the ring junction (Scheme 4). In D-galactose-de-
rived case, a closely related transition state C is favored, in
which –CH2OBn and the C-6 OBn group avoid repulsive interac-
tions present in transition state B as was evident by the inspection
of molecular models. These transition state analyses support the
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Enzyme inhibition studies: The inhibitory activity of aminocyclo-
pentitols 12 and 18 were tested against five commercially available
glycosidases. Thus, aminocyclopentitol 12 was active only against
b-galactosidase (bovine liver) (IC50 = 0.4 mM), while aminocyclo-
pentitol 18 was active against a-galactosidase (coffee beans)
(IC50 = 0.2 mM); otherwise compounds were inactive up to 3 mM.
Although these compounds are not as strongly active as mannost-
atin A, an a-mannosidase inhibitor19 with IC50 = 160 nm, and tre-
hazolin, a trehalase inhibitor20 with IC50 = 27 nm, they are
specific galactosidase inhibitors. It is expected that further struc-
tural modifications may lead to improved inhibitions.

In conclusion, we have developed a direct and efficient route to
the synthesis of nitrogenated quaternary centered polyhydroxylat-
ed aminocyclopentanes (aminocyclopentitols) with full stereo-
chemical control by using intramolecular ketonitrone-olefin
cycloaddition as a key step. To the best of our knowledge, these
are the first examples of aminocyclopentitols bearing an amino
group at the quaternary center that act as galactosidase inhibitors.
Compounds 12 and 18 showed specific inhibition toward b-galac-
tosidase and a-galactosidase, respectively.
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